p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.256D4, C42.384C23, C4○3(C8⋊Q8), C8⋊Q8⋊38C2, C4○3(C8⋊D4), (C4×Q16)⋊29C2, C8.7(C4○D4), C8⋊D4.4C2, (C4×SD16)⋊16C2, C4○2(C8.2D4), C4○2(C8.D4), C8.2D4⋊25C2, C8.D4⋊36C2, (C4×M4(2))⋊8C2, C4⋊C4.111C23, (C2×C4).370C24, (C2×C8).277C23, (C4×C8).182C22, (C4×D4).91C22, (C22×C4).476D4, C23.266(C2×D4), C4⋊Q8.293C22, (C4×Q8).88C22, (C2×D4).125C23, (C2×Q8).113C23, C2.D8.219C22, C4.Q8.135C22, C8⋊C4.127C22, C4⋊D4.174C22, C4.144(C8.C22), (C2×C42).863C22, (C2×Q16).158C22, C22.630(C22×D4), C22⋊Q8.179C22, D4⋊C4.203C22, C2.43(D8⋊C22), (C22×C4).1050C23, Q8⋊C4.205C22, (C2×SD16).117C22, C4.4D4.145C22, C42.C2.122C22, C4○2(C42.30C22), C4○3(C42.28C22), C23.37C23⋊13C2, C42.28C22⋊39C2, C42.30C22⋊24C2, (C2×M4(2)).280C22, C23.36C23.22C2, C2.67(C22.26C24), C4.55(C2×C4○D4), (C2×C4).523(C2×D4), C2.45(C2×C8.C22), SmallGroup(128,1904)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.256D4
G = < a,b,c,d | a4=b4=d2=1, c4=a2, ab=ba, cac-1=a-1, dad=a-1b2, bc=cb, dbd=a2b, dcd=c3 >
Subgroups: 316 in 182 conjugacy classes, 90 normal (42 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4×C8, C8⋊C4, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C2×C42, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4×Q8, C4×Q8, C4⋊D4, C22⋊Q8, C22⋊Q8, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42.C2, C42⋊2C2, C4⋊Q8, C2×M4(2), C2×SD16, C2×Q16, C4×M4(2), C4×SD16, C4×Q16, C8⋊D4, C8.D4, C42.28C22, C42.30C22, C8.2D4, C8⋊Q8, C23.36C23, C23.37C23, C42.256D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C8.C22, C22×D4, C2×C4○D4, C22.26C24, C2×C8.C22, D8⋊C22, C42.256D4
(1 42 5 46)(2 47 6 43)(3 44 7 48)(4 41 8 45)(9 53 13 49)(10 50 14 54)(11 55 15 51)(12 52 16 56)(17 34 21 38)(18 39 22 35)(19 36 23 40)(20 33 24 37)(25 63 29 59)(26 60 30 64)(27 57 31 61)(28 62 32 58)
(1 40 27 12)(2 33 28 13)(3 34 29 14)(4 35 30 15)(5 36 31 16)(6 37 32 9)(7 38 25 10)(8 39 26 11)(17 63 50 48)(18 64 51 41)(19 57 52 42)(20 58 53 43)(21 59 54 44)(22 60 55 45)(23 61 56 46)(24 62 49 47)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 3)(2 6)(5 7)(10 12)(11 15)(14 16)(17 56)(18 51)(19 54)(20 49)(21 52)(22 55)(23 50)(24 53)(25 31)(27 29)(28 32)(34 36)(35 39)(38 40)(41 60)(42 63)(43 58)(44 61)(45 64)(46 59)(47 62)(48 57)
G:=sub<Sym(64)| (1,42,5,46)(2,47,6,43)(3,44,7,48)(4,41,8,45)(9,53,13,49)(10,50,14,54)(11,55,15,51)(12,52,16,56)(17,34,21,38)(18,39,22,35)(19,36,23,40)(20,33,24,37)(25,63,29,59)(26,60,30,64)(27,57,31,61)(28,62,32,58), (1,40,27,12)(2,33,28,13)(3,34,29,14)(4,35,30,15)(5,36,31,16)(6,37,32,9)(7,38,25,10)(8,39,26,11)(17,63,50,48)(18,64,51,41)(19,57,52,42)(20,58,53,43)(21,59,54,44)(22,60,55,45)(23,61,56,46)(24,62,49,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,3)(2,6)(5,7)(10,12)(11,15)(14,16)(17,56)(18,51)(19,54)(20,49)(21,52)(22,55)(23,50)(24,53)(25,31)(27,29)(28,32)(34,36)(35,39)(38,40)(41,60)(42,63)(43,58)(44,61)(45,64)(46,59)(47,62)(48,57)>;
G:=Group( (1,42,5,46)(2,47,6,43)(3,44,7,48)(4,41,8,45)(9,53,13,49)(10,50,14,54)(11,55,15,51)(12,52,16,56)(17,34,21,38)(18,39,22,35)(19,36,23,40)(20,33,24,37)(25,63,29,59)(26,60,30,64)(27,57,31,61)(28,62,32,58), (1,40,27,12)(2,33,28,13)(3,34,29,14)(4,35,30,15)(5,36,31,16)(6,37,32,9)(7,38,25,10)(8,39,26,11)(17,63,50,48)(18,64,51,41)(19,57,52,42)(20,58,53,43)(21,59,54,44)(22,60,55,45)(23,61,56,46)(24,62,49,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,3)(2,6)(5,7)(10,12)(11,15)(14,16)(17,56)(18,51)(19,54)(20,49)(21,52)(22,55)(23,50)(24,53)(25,31)(27,29)(28,32)(34,36)(35,39)(38,40)(41,60)(42,63)(43,58)(44,61)(45,64)(46,59)(47,62)(48,57) );
G=PermutationGroup([[(1,42,5,46),(2,47,6,43),(3,44,7,48),(4,41,8,45),(9,53,13,49),(10,50,14,54),(11,55,15,51),(12,52,16,56),(17,34,21,38),(18,39,22,35),(19,36,23,40),(20,33,24,37),(25,63,29,59),(26,60,30,64),(27,57,31,61),(28,62,32,58)], [(1,40,27,12),(2,33,28,13),(3,34,29,14),(4,35,30,15),(5,36,31,16),(6,37,32,9),(7,38,25,10),(8,39,26,11),(17,63,50,48),(18,64,51,41),(19,57,52,42),(20,58,53,43),(21,59,54,44),(22,60,55,45),(23,61,56,46),(24,62,49,47)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,3),(2,6),(5,7),(10,12),(11,15),(14,16),(17,56),(18,51),(19,54),(20,49),(21,52),(22,55),(23,50),(24,53),(25,31),(27,29),(28,32),(34,36),(35,39),(38,40),(41,60),(42,63),(43,58),(44,61),(45,64),(46,59),(47,62),(48,57)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | ··· | 4R | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 4 | 8 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | C8.C22 | D8⋊C22 |
kernel | C42.256D4 | C4×M4(2) | C4×SD16 | C4×Q16 | C8⋊D4 | C8.D4 | C42.28C22 | C42.30C22 | C8.2D4 | C8⋊Q8 | C23.36C23 | C23.37C23 | C42 | C22×C4 | C8 | C4 | C2 |
# reps | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 2 | 2 |
Matrix representation of C42.256D4 ►in GL6(𝔽17)
6 | 4 | 0 | 0 | 0 | 0 |
4 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 3 | 15 | 15 |
0 | 0 | 14 | 1 | 0 | 2 |
0 | 0 | 5 | 5 | 4 | 8 |
0 | 0 | 0 | 12 | 14 | 13 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 13 | 13 | 13 | 9 |
0 | 0 | 4 | 0 | 4 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 16 | 16 | 16 | 15 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
14 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 16 | 16 |
G:=sub<GL(6,GF(17))| [6,4,0,0,0,0,4,11,0,0,0,0,0,0,16,14,5,0,0,0,3,1,5,12,0,0,15,0,4,14,0,0,15,2,8,13],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,13,13,4,0,0,4,0,13,0,0,0,0,0,13,4,0,0,0,0,9,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,1,0,0,0,16,1,0,0,0,1,16,0,0,0,0,0,15,0,1],[1,14,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,16,0,0,0,0,0,0,0,1,16,0,0,0,0,0,16] >;
C42.256D4 in GAP, Magma, Sage, TeX
C_4^2._{256}D_4
% in TeX
G:=Group("C4^2.256D4");
// GroupNames label
G:=SmallGroup(128,1904);
// by ID
G=gap.SmallGroup(128,1904);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,758,723,184,80,4037,124]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^4=a^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d=a^-1*b^2,b*c=c*b,d*b*d=a^2*b,d*c*d=c^3>;
// generators/relations